Муниципальное бюджетное общеобразовательное учреждение

« Фомкинская средняя общеобразовательная школа» Нурлатского муниципального района Республики Татарстан

«Согласовано»

Руководитель МО /P.3.Сулейманова /

Протокол № 1 от

« 28 »августа 2023г.

«Согласовано»

Заместитель директора по учебной работе МБОУ «Фомкинская СОШ»

Га /Г.Ф.Галлямова/

«28» августа 2023г.

«Утверждаю»

Руководитель МБОУ «Фомкинская СОШ»

/X.С.Сафиуллин/

риказ № 141 от

«31» августа 2023г.

РАБОЧАЯ ПРОГРАММА

Абдрахманова Раиса Азатовича

Учитель первой квалификационной категории

По астрономии 11 класс

Рассмотрено на заседании

педагогического совета

протокол № 1 от

«28» августа 2023 года

1. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ.

В результате изучения астрономии на базовом уровне ученик должен:

знать/понимать:

смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;

смысл физических величин: парсек, световой год, астрономическая единица, звездная величина;

смысл физического закона Хаббла;

основные этапы освоения космического пространства;

гипотезы происхождения Солнечной системы;

основные характеристики и строение Солнца, солнечной атмосферы;

размеры Галактики, положение и период обращения Солнца относительно центра Галактики;

уметь:

приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;

описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы "цвет-светимость", физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;

характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;

находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;

использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук;

оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п/п	Тема	Кол-во часов
1	Введение	1
2	Астрометрия	5
3	Небесная механика	3
4	Строение солнечной системы	7
5	Астрофизика и звездная астрономия	7
6	Млечный путь	3
7	Галактика	3
8	Строение и эволюция Вселенной	2
9	Современные проблемы астрономии	3
	Итого:	34

2.СОДЕРЖАНИЕ КУРСА

Введение в астрономию 1час

Строение и масштабы Вселенной, и современные наблюдения

Какие тела заполняют Вселенную. Каковы их характерные размеры и расстояния между ними. Какие физические условия встречаются в них. Вселенная расширяется. Где и как работают самые крупные оптические телескопы. Как астрономы исследуют гамма-излучение Вселенной. Что увидели гравитационно-волновые и нейтринные телескопы.

Астрометрия 5 час

Звёздное небо и видимое движение небесных светил

Какие звёзды входят в созвездия Ориона и Лебедя. Солнце движется по эклиптике. Планеты совершают петлеобразное движение. Небесные координаты. Что такое небесный экватор и небесный меридиан. Как строят экваториальную систему небесных координат. Как строят горизонтальную систему небесных координат.

Видимое движение планет и Солнца

Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике.

Движение Луны и затмения

Фазы Луны и синодический месяц, условия наступления солнечного илунного затмений. Почему происходят солнечные затмения. Сарос и предсказания затмений

Время и календарь

Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы их согласования Юлианский и григорианский календари.

Небесная механика 3 час

Гелиоцентрическая система мира

Представления о строении Солнечной системы в античные времена ив средневековье. Гелиоцентрическая система мира, доказательство вращения Земли вокруг Солнца. Параллакс звёзд и определение расстояния до них, парсек.

Законы Кеплера

Открытие И.Кеплером законов движения планет. Открытие закона Всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел.

Космические скорости

Расчёты первой и второй космической скорости и их физический смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите.

Межпланетные перелёты

Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы 7 час

Современные представления о Солнечной системе.

Состав Солнечной системы. Планеты земной группы и планеты-гиганты, их принципиальные различия. Облако комет О орта и Пояс Койпера. Размеры тел солнечной системы.

Планета Земля

Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли.

Планеты земной группы

Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Как парниковый эффект греет поверхность Земли и перегревает атмосферу Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса.

Планеты-гиганты

Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканическая деятельность на спутнике Юпитера Ио. Природа колец вокруг планет-гигантов.

Планеты-карлики и их свойства.

Малые тела Солнечной системы

Природа и движение астероидов. Специфика движения групп астероидов Троянцев и Греков. Природа и движение комет. Пояс Койпера и Облако комет Оорта. Природа метеоров и метеоритов.

Метеоры и метеориты

Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Практическая астрофизика и физика Солнца 7 час

Методы астрофизических исследований

Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры.

Солнце

Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу.

Внутреннее строение Солнца

Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звёзды

Основные характеристики звёзд

Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её физические основы. Диаграмма «спектральный класс» —светимость звёзд, связь между массой и светимостью звёзд.

Внутреннее строение звёзд

Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов.

Белые карлики, нейтронные звёзды, пульсары и чёрные дыры

Строение звёзд белых карликов и предел на их массу — предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр иих параметры.

Двойные, кратные и переменные звёзды

Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды — маяки во Вселенной, по которым определяют расстояния до далёких скоплений и галактик.

Новые и сверхновые звёзды

Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды — вспышка сверхновой первого типа. Взрыв массивной звезды в конце своей эволюции — взрыв сверхновой второго типа. Наблюдение остатков взрывов сверхновых звёзд. Эволюция звёзд: рождение, жизнь и смерть звёзд

Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция мало массивных звёзд, и гравитационный коллапс и взрыв с образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд и проверка теории эволюции звёзд.

Млечный Путь 3 час

Газ и пыль в Галактике

Как образуются отражательные туманности. Почему светятся диффузные туманности. Как концентрируются газовые и пылевые туманности в Галактике.

Рассеянные и шаровые звёздные скопления

Наблюдаемые свойства рассеянных звёздных скоплений. наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике. Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь со взрывами сверхновых звёзд.

Галактики 3 час

Как классифицировали галактики по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них.

Закон Хаббла

Вращение галактик и тёмная материя в них.

Активные галактики и квазары

Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них.

Скопления галактик

Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной 2 час

Конечность и бесконечность Вселенной — парадоксы классической космологии.

Закон всемирного тяготения и представления о конечности и бесконечности Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней. Расширяющаяся Вселенная

Связь средней плотности материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной.Модель «горячей Вселенной» и реликтовое излучения

Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции

Вселенной. Реликтовое излучение — излучение, которое осталось во Вселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной.

Современные проблемы астрономии 3 час

Ускоренное расширение Вселенной и тёмная энергия

Наблюдения сверхновых звёзд I типа в далёких галактиках и открытии ускоренного расширения Вселенной. Открытие силы всемирного отталкивания. Тёмная энергия увеличивает массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания. Обнаружение планет возле других звёзд.

Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзо планет. Оценка условий на поверхностях экзо планет. Поиск экзо планет с комфортными условиями для жизни на них. Поиски жизни и разума во Вселенной

Развитие представлений о возникновении и существовании жизни во Вселенной. Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.